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Abstract : Photoiysis of 3a-dimethylphenylsiloxy-Sa-androstane-6.e in acetonitrile in the presence of 
triethylamine with 254 nm light initiates photoreduction and photoepimerization of the 6-keto and I7-keto 
functionalities, respectively. A iwo-step intr&nolecular singlet-singlet energy transfer mechanism is proposed to 
expIain the photoepimeriration. 

We have recently reported that 3o-dimethylphenylsiloxy-5a-androstane- I 1, J 7-dione’ (1) undergoes 

intramolecular singlet-singlet energy transfer s-‘(intra-SUET) from the “antenna” dimethylphenylsiloxy (DPS) group 

to the J I-keto group, which is followed by intramolecular triplet-triplet energy transfer to the J7-keto group. The 

result is a site-specific photoreduction of the ketone more distal to the antenna, the J I-keto group acting as a 

“singlet-triplet switch”. We now describe the photophysics and 254 nm initiated photochemistry of 3a- 

dimethylphenylsiloxy-Sa-androstane-6,J7-dione (2). wherein the distal 17-keto functionality is photoepimerized 

and the proximal 6-keto group is photoreduced upon excitation of the antenna. Evidence presented below indicates 

that, in this case, the photochemistry of the J7-keto group is attributable to intra-SSET between the 6- and J7- 

keto functionalities, with the presence of the 6-keto group dramatically enhancing the efficiency of DPS sensitized 

photoepimerization by comparison with, e.g. the steroidal monoketone, 3a-dimethylphenylsiloxy-5a-androstan- 

J7-one (3). 

1 

The dione 2 was readily prepared by silylation of the parent steroidal alcohol and has been fully 

characterized by NMR and IR spectroscopy, mass spectrometry and elemental analysis. Photolysis of 2 (14.3 mM) 

in acetonitrile with triethylamine (TEA. 64.8 mM) in a Rayonet reactor (New England Ultraviolet Co.) with 4 254- 

nm lamps for 75 min at r.t. gave the epimer 4. mono-reduced products 5 and 6, and an as yet uncharacterixed 

product, 7, in a ratio of 4:5:6:7 = J J.9:6.&J.J:J.O by GC analysis (cf. eq. (1)). The structures of the products were 

confirmed by IR. NMR and mass spectral data. 
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The photoreduction at both C-6 and C-17 can be completely quenched by cis-piperylene (40 mM). The quantum 

efficiencies for photoreduction at the C-6 (d:,) were measured as a function of [TEA] (32.4-92.9 mM) at [2] I 13.7 

mM. using a N&YAG laser at 266 nm. As had been observed for reduction of C- 17 in the steroidal dione 1, a plot 

of 1/d:& vs I/[TEA] is linear (slope = 1.11 and intercept = 1.03). indicative of one (e.g. triplet) excited state 

precursor. This is consistent with the fact that the photoreduction of cyclohexanones is generally triplet- 

derived.‘**16 By contrast, the photoepimerixation at C-17 is only partially (38%) quenched by the diene and is much 

less responsive to the [TEA] (also to be expected, since the a-cleavage of cyclohexanones is known to be appreciably 

singlet derived).‘*’ However, the most striking difference between 1 and 2 is la the relative efficiencies of the 

photoeplmerlutlon and photoreduction reactions. For 2, reduction of C-17 is minimal and epimerixation at this 

site is even 3.9-fold more efficient than reduction at C-6 (with [TEA] = 60 mM: &,i = 0.18, I&, = 0.046; see Table 

1). In 1, reduction (at C-17; C- 11 is virtually inert) generally exceeds epimerization, with the latter process having 

all but disappeared at 60 mM [TEA]. Clearly, the photochemical behavior of the l7-keto group functions as a 

probe of its multlpllclty and one must conclude that compound 2 is reacting at C-17 primarily through its singlet 

state, whereas the chemistry at this ketone in compound 1 derives from the triplet manifold. 

Significantly, at a [TEA] = 60 mM #.Pi (0.18) for 2 is 5.3-fold greater than that (0.034) for the monoketone 3. 

This indicates that sensitization by the antenna is occuring via a two step intra-SSET, in which the 6-keto 

chromophore effectively relays singlet energy from the DPS antenna to the 17-keto group. The ll-keto singlet state 

in 2 is therefore more efficiently populated than is the case in 3, which must rely on a more long-range direct intra- 

SSET. Alternative modes of excitation at C-17 in 2 and 3 can be readily excluded. The lack of quenching by 

cyclohexanone of the photoreduction of 3 eliminates intermolecular singlet-singlet energy transfer.’ Co-excitation 

of the 17-keto chromophore at 266 nm would not be expected in the presence of the antenna since tree for 

cyclopentahone is 13.5-fold lower than that for the DPS group. The overall mechanism is presented in Scheme 1. 
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Table 1. Emission and Photochemical Quantum Efficiencies and Singlet Lifetimes in Acetonitrile 

Steroid 4f’ Tfb %tnssmC 4dd 4rmdd 4Ndd 
(=) (17-C-o) (17-C-o) (6-C-O) 

I 0.0017 0.27 0.78 0 0.023 

2 0.00063 4.25 0.88 0.18 0.046 

3 0.0047 0.95 0.21 0.034 0.010 

8 0.0053 I.20 - 

a. Excitation at 254 nm with using toluene in cyclohexane as a reference. 

b. Using a PTI LS-1 lifetime fluorimeter with excitation at 266 nm and emission at 288 nm. c. This can be derived 

from either rt or 4f data. For compounds 1 and 3, 4intn_88ET - (4-G)/<, where n represents one of the DPS 

steroidal ketones, and 8 (3a-dimethylphenylsiloxy-5a-androstan-l7B-01) functions as a reference; because of the 

short lifetime of 2. 4iintra_ssET was calculated from 4ht,_ssET = (4:-4;)/4f. The lifetime indicated by such a value 

would be about 0.15 ns. d. The quantum efficiencies were measured using 266-nm laser light at [steroid] = I5 mM 

and [TEA] = 60 mM. 

Scheme 1 
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The proposal of a two-step intro-SSET in 2 is supported by a comparison of this compound’s fluorescence 

efficieucy (dr) and singlet lifetime (rr) with respect to the monoketone. 3, and the steroidal alcohol, 8 (Table 1). 

One notes that both dr and rr for 2 are greatly reduced relative to 8, the consequence of intra-SSET in the dions. 

The efficiencies of intra-SSET (#a,tn_aaET) can be calculated from the rt and/or or values (see Table 1) wherein one 

observes that energy transfer for 2 (88%)’ is appreciably more efficient than in the mono-ketone, 3 (21%). 

A comparison of the photophysics and photochemistry of compounds 1 and 2 reveals a striking example of 

intra-SSET control of excited state multiplicity in the distal functionality. In 1, intra-SSET is inefficient so that 

energy is transferred to the I7-keto group through triplet energy transfer (the 1 I-keto group acts as a S,-T, switch; 

photoreduction dominates). In 2. intra-SSET between the 6 and 17 positions is efficient and leads to 

photoepimerixation. The different properties of these substrates are not explicable through a consideration of 

interchromophore distances, since the two keto groups are clearly closer in 1 than in 2 (3.9 A and 6.2 A for 1 and 

2, respectively. by x-ray crystallographic analysis of 3p-dimethylphenylsiloxy-androstane-17-one). It seems likely 

that intra-SSET involves “through-bond” interactions within the rigid steroidal skeleton* and further studies to test 

this possibility are in progress. 
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